Complex Number

Basic Concepts

Definition: $i=\sqrt{-1}$

Complex number: $a+bi$, where $a$ is real part,$bi$ is imaginary part. $a={\rm Re}(\mathbb{Z})$, $b={\rm Im}(\mathbb{Z})$

Notes: $i^2=-1$, $i^3=-i$, $i^4=1$

It can also be written in vector form, such as $a \choose b$ (Note: this writing is only useful when calculating addition and subtraction, other operations are more troublesome).

阅读更多

复数

本文同时提供以下语言的翻译: English.

Basic Concepts

定义: $i=\sqrt{-1}$

复数(Complex number): $a+bi$, 其中$a$为实数部分,$bi$为虚数部分. $a={\rm Re}(\mathbb{Z})$, $b={\rm Im}(\mathbb{Z})$

注意: $i^2=-1$, $i^3=-i$, $i^4=1$

也可以用向量的形式书写, 如 $a \choose b$ (注: 这种写法只在计算加减法的时候好用,其他运算比较麻烦)

阅读更多
Your browser is out-of-date!

Update your browser to view this website correctly.&npsb;Update my browser now

×