Simple one. If the differential equation is like $\frac{\mathrm{d}x}{\mathrm{d}y} = Q(x)$, then solution would be $y=\int Q(x) \mathrm{d}x$.
Separation of variables. If the differential equation is like $\frac{\mathrm{d}x}{\mathrm{d}y} = f(x)g(y)$, then it could be re-write in $\frac{1}{f(x)}\mathrm{d}x = g(y) \mathrm{d}y$, then integrating each side and then the solution can be goten.
Integrating factor. If the differential equation is like $\frac{\mathrm{d}x}{\mathrm{d}y}+P(x)y=Q(x)y$, then it could become $$e^{\int P(x) \ \mathrm{d}x} \frac{\mathrm{d}x}{\mathrm{d}y} + e^{\int P(x) \ \mathrm{d}x} \ P(x)y = e^{\int P(x) \ \mathrm{d}x} \ Q(x) $$ by multiplying $$e^{\int P(x) \ \mathrm{d}x}$$, so that $$e^{\int P(x) \ \mathrm{d}x} \frac{\mathrm{d}x}{\mathrm{d}y} + e^{\int P(x) \ \mathrm{d}x} \ P(x)y = e^{\int P(x) \ \mathrm{d}x} \ Q(x) \ $$ using product rule, $$ \frac{\mathrm{d}}{\mathrm{d}x} (e^{\int P(x) \ \mathrm{d}x} y) = e^{\int P(x) \ \mathrm{d}x} Q(x) $$