微分方程

本文同时提供以下语言的翻译: English.

一阶微分方程

  1. 如果微分方程是$\frac{\mathrm{d}x}{\mathrm{d}y} = Q(x)$,那么解就是$y=\int Q(x) \mathrm{d}x$。
  2. 分离变量法。如果微分方程为$\frac{\mathrm{d}x}{\mathrm{d}y} = f(x)g(y)$,则可以将其改写为$\frac{1}{f(x)}\mathrm{d}x = g(y) \mathrm{d}y$,然后对每条边积分,即可得到解。
  3. 积分因子. 如果微分方程为 $\frac{\mathrm{d}x}{\mathrm{d}y}+P(x)y=Q(x)y$, 那他就可以转化为 $$e^{\int P(x) \ \mathrm{d}x} \frac{\mathrm{d}x}{\mathrm{d}y} + e^{\int P(x) \ \mathrm{d}x} \ P(x)y = e^{\int P(x) \ \mathrm{d}x} \ Q(x) $$ 通过每项都乘 $$e^{\int P(x) \ \mathrm{d}x}$$, 因此
    $$e^{\int P(x) \ \mathrm{d}x} \frac{\mathrm{d}x}{\mathrm{d}y} + e^{\int P(x) \ \mathrm{d}x} \ P(x)y = e^{\int P(x) \ \mathrm{d}x} \ Q(x) \ $$
    然后使用积分的乘积法则, 则,
    $$ \frac{\mathrm{d}}{\mathrm{d}x} (e^{\int P(x) \ \mathrm{d}x} y) = e^{\int P(x) \ \mathrm{d}x} Q(x) $$
阅读更多

Integration Techniques for Differential Equation

First Order Differential Equation

  1. Simple one. If the differential equation is like $\frac{\mathrm{d}x}{\mathrm{d}y} = Q(x)$, then solution would be $y=\int Q(x) \mathrm{d}x$.
  2. Separation of variables. If the differential equation is like $\frac{\mathrm{d}x}{\mathrm{d}y} = f(x)g(y)$, then it could be re-write in $\frac{1}{f(x)}\mathrm{d}x = g(y) \mathrm{d}y$, then integrating each side and then the solution can be goten.
  3. Integrating factor. If the differential equation is like $\frac{\mathrm{d}x}{\mathrm{d}y}+P(x)y=Q(x)y$, then it could become $$e^{\int P(x) \ \mathrm{d}x} \frac{\mathrm{d}x}{\mathrm{d}y} + e^{\int P(x) \ \mathrm{d}x} \ P(x)y = e^{\int P(x) \ \mathrm{d}x} \ Q(x) $$ by multiplying $$e^{\int P(x) \ \mathrm{d}x}$$, so that
    $$e^{\int P(x) \ \mathrm{d}x} \frac{\mathrm{d}x}{\mathrm{d}y} + e^{\int P(x) \ \mathrm{d}x} \ P(x)y = e^{\int P(x) \ \mathrm{d}x} \ Q(x) \ $$
    using product rule,
    $$ \frac{\mathrm{d}}{\mathrm{d}x} (e^{\int P(x) \ \mathrm{d}x} y) = e^{\int P(x) \ \mathrm{d}x} Q(x) $$
阅读更多
Your browser is out-of-date!

Update your browser to view this website correctly.&npsb;Update my browser now

×